39 research outputs found

    Hydrophobic and ionic-interactions in bulk and confined water with implications for collapse and folding of proteins

    Full text link
    Water and water-mediated interactions determine thermodynamic and kinetics of protein folding, protein aggregation and self-assembly in confined spaces. To obtain insights into the role of water in the context of folding problems, we describe computer simulations of a few related model systems. The dynamics of collapse of eicosane shows that upon expulsion of water the linear hydrocarbon chain adopts an ordered helical hairpin structure with 1.5 turns. The structure of dimer of eicosane molecules has two well ordered helical hairpins that are stacked perpendicular to each other. As a prelude to studying folding in confined spaces we used simulations to understand changes in hydrophobic and ionic interactions in nano droplets. Solvation of hydrophobic and charged species change drastically in nano water droplets. Hydrophobic species are localized at the boundary. The tendency of ions to be at the boundary where water density is low increases as the charge density decreases. Interaction between hydrophobic, polar, and charged residue are also profoundly altered in confined spaces. Using the results of computer simulations and accounting for loss of chain entropy upon confinement we argue and then demonstrate, using simulations in explicit water, that ordered states of generic amphiphilic peptide sequences should be stabilized in cylindrical nanopores

    Energetic particle influence on the Earth's atmosphere

    Get PDF
    This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe

    Searches for invisible decays of the Higgs boson in pp collisions at root S=7, 8, and 13 TeV

    Get PDF
    Peer reviewe

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Charged-particle nuclear modification factors in PbPb and pPb collisions at √=sNN=5.02 TeV

    Get PDF
    The spectra of charged particles produced within the pseudorapidity window |η| < 1 at √ sNN = 5.02 TeV are measured using 404 ”b −1 of PbPb and 27.4 pb−1 of pp data collected by the CMS detector at the LHC in 2015. The spectra are presented over the transverse momentum ranges spanning 0.5 < pT < 400 GeV in pp and 0.7 < pT < 400 GeV in PbPb collisions. The corresponding nuclear modification factor, RAA, is measured in bins of collision centrality. The RAA in the 5% most central collisions shows a maximal suppression by a factor of 7–8 in the pT region of 6–9 GeV. This dip is followed by an increase, which continues up to the highest pT measured, and approaches unity in the vicinity of pT = 200 GeV. The RAA is compared to theoretical predictions and earlier experimental results at lower collision energies. The newly measured pp spectrum is combined with the pPb spectrum previously published by the CMS collaboration to construct the pPb nuclear modification factor, RpA, up to 120 GeV. For pT > 20 GeV, RpA exhibits weak momentum dependence and shows a moderate enhancement above unity

    New scenarios of protein folding can occur on the Ribosome

    No full text
    Identifying and understanding the differences between protein folding in bulk solution and in the cell is a crucial challenge facing biology. Using Langevin dynamics, we have simulated intact ribosomes containing five different nascent chains arrested at different stages of their synthesis such that each nascent chain can fold and unfold at or near the exit tunnel vestibule. We find that the native state is destabilized close to the ribosome surface due to an increase in unfolded state entropy and a decrease in native state entropy; the former arises because the unfolded ensemble tends to behave as an expanded random coil near the ribosome and a semicompact globule in bulk solution. In addition, the unfolded ensemble of the nascent chain adopts a highly anisotropic shape near the ribosome surface and the cooperativity of the folding-unfolding transition is decreased due to the appearance of partially folded structures that are not populated in bulk solution. The results show, in light of these effects, that with increasing nascent chain length folding rates increase in a linear manner and unfolding rates decrease, with larger and topologically more complex folds being the most highly perturbed by the ribosome. Analysis of folding trajectories, initiated by temperature quench, reveals the transition state ensemble is driven toward compaction and greater native-like structure by interactions with the ribosome surface and exit vestibule. Furthermore, the diversity of folding pathways decreases and the probability increases of initiating folding via the N-terminus on the ribosome. We show that all of these findings are equally applicable to the situation in which protein folding occurs during continuous (non-arrested) translation provided that the time scales of folding and unfolding are much faster than the time scale of monomer addition to the growing nascent chain, which results in a quasi-equilibrium process. These substantial ribosome-induced perturbations to almost all aspects of protein folding indicate that folding scenarios that are distinct from those of bulk solution can occur on the ribosome

    Trigger factor slows co-translational folding through kinetic trapping while sterically protecting the nascent chain from aberrant Cytosolic interactions

    No full text
    In conformational diseases, native protein conformers convert to pathological intermediates that polymerize. Structural characterization of these key intermediates is challenging. They are unstable and minimally populated in dynamic equilibria that may be perturbed by many analytical techniques. We have characterized a forme fruste deficiency variant of α1-antitrypsin (Lys154Asn) that forms polymers recapitulating the conformer-specific neo-epitope observed in polymers that form in vivo. Lys154Asn α1-antitrypsin populates an intermediate ensemble along the polymerization pathway at physiological temperatures. Nuclear magnetic resonance spectroscopy was used to report the structural and dynamic changes associated with this. Our data highlight an interaction network likely to regulate conformational change and do not support the recent contention that the disease-relevant intermediate is substantially unfolded. Conformational disease intermediates may best be defined using powerful but minimally perturbing techniques, mild disease mutants, and physiological conditions

    Transient tertiary structure formation within the Ribosome Exit Port

    No full text
    The exit tunnel of the ribosome is commonly considered to be sufficiently narrow that co-translational folding can begin only when specific segments of nascent chains are fully extruded from the tunnel. Here we show, on the basis of molecular simulations and comparison with experiment, that the long-range contacts essential for initiating protein folding can form within a nascent chain when it reaches the last 20 Å of the exit tunnel. We further show that, in this “exit port”, a significant proportion of native and non-native tertiary structure can form without steric overlap with the ribosome itself, and provide a library of structural elements that our simulations predict can form in the exit tunnel and is amenable to experimental testing. Our results show that these elements of folded tertiary structure form only transiently and are at their midpoints of stability at the boundary region between the inside and the outside of the tunnel. These findings provide a framework for interpreting a range of recent experimental studies of ribosome nascent chain complexes and for understanding key aspects of the nature of co-translational folding
    corecore